
Dr. Gunjan Mansingh

Department of Computing

UWI

July 4- 29, 2022

Week 2 - Day 1, Session 2



Take-away Message

All non-trivial programming solutions to a problem require 
some sort of repetition of a process in order to complete a 
task. (i.e. looping is unavoidable)

Looping can be achieved through recursion or iteration
◦ Iteration: Focus on changing state; extract result from state at end.

◦Recursion: Focus on result in terms of smaller results



Repetition - Recursion & Iteration

 Iteration

The use of looping special forms to create repetition

Loops infinitely if condition never evaluates to false

 Recursion

The use of function calls to create repetition

Loops infinitely if condition never breaks down to base case

Repeatedly invokes the mechanism and function

 Uses more memory

 Copies of the function’s variables are made

Often presents elegant solutions



Recursion

Recursive function calls itself an undetermined number of times before combining the output 
of all the function calls in one return statement.





Recursive Approach



Recursion Example 

What is (4 * 3)?

Can we say this is same as 4 + (4 * 2)

(4 * 2)?

Can we say this is same as 4 + (4 * 1)

(4 * 1)?

Can we say this is same as 4 + (4 * 0)

(4 * 0)?

0



Recursion Example 

What is (4 * 3)?

Can we say this is same as 4 + (4 * 2)

(4 * 2)?

Can we say this is same as 4 + (4 * 1)

(4 * 1)?

Can we say this is same as 4 + (4 * 0)

(4 * 0)?

0



Recursion

def mult(x,y) :

if y==0:

return 0

else:

return x + mult(x, y-1)

Function 
name 2 Parameters

BASE CASE or 
Stopping Condition

RECURSIVE 
CASE



mult(4,3)

4 + mult(4,2)

4 + mult(4,1)

4 + mult(4,0)

0

4 + 0

4 + 4

4 + 8

Recursion Example 1 

12



power(4,3)

4 * power(4,2)

4 * power(4,1)

4 * power(4,0)

1

4 * 1

4 * 4

4 * 16

Recursion Example 2 

64


